Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
1.
Heliyon ; 10(9): e29895, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38694126

RESUMEN

While immersive shopping has injected new vitality into China's e-commerce, it has also resulted in consumers' over-reliance on online shopping. Psychological studies have linked online shopping addiction with depression, but business practices challenge this conclusion. This study, grounded in addiction theory, developed a theoretical model, and conducted an online survey with 214 live-streaming shoppers using structural equation modeling for validation. The primary focus was on determining whether consumers truly become addicted to online shopping in the four stages of the addiction model. The study unveils the process of consumers becoming addicted to online shopping. It explores the moderating role of perceived risk in the relationship between utilitarian and hedonic purchases and online shopping addiction. The findings suggest that through tactics such as traffic promotion, traffic trapping, anchor feature utilization, and incorporation of consumer aesthetics, merchants may induce utilitarian and hedonic purchases, leading to addiction to live-streaming shopping among consumers. Furthermore, perceived risk significantly and negatively moderates the relationship between utilitarian purchases and online shopping addiction. Our research indicates that merchants intentionally create external stimuli, enticing consumers to indulge in online shopping, suggesting that online shopping addiction is not merely a simple psychological state but may be influenced by external factors. This study provides novel insights into the phenomenon of online shopping addiction while offering valuable recommendations for consumers seeking to avoid succumbing to its allure.

2.
Int J Biol Macromol ; 263(Pt 2): 130441, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417760

RESUMEN

Carbohydrates are exported by the SWEET family of transporters, which is a novel class of carriers that can transport sugars across cell membranes and facilitate sugar's long-distance transport from source to sink organs in plants. SWEETs play crucial roles in a wide range of physiologically important processes by regulating apoplastic and symplastic sugar concentrations. These processes include host-pathogen interactions, abiotic stress responses, and plant growth and development. In the present review, we (i) describe the structure and organization of SWEETs in the cell membrane, (ii) discuss the roles of SWEETs in sugar loading and unloading processes, (iii) identify the distinct functions of SWEETs in regulating plant growth and development including flower, fruit, and seed development, (iv) shed light on the importance of SWEETs in modulating abiotic stress resistance, and (v) describe the role of SWEET genes during plant-pathogen interaction. Finally, several perspectives regarding future investigations for improving the understanding of sugar-mediated plant defenses are proposed.


Asunto(s)
Proteínas de Plantas , Plantas , Proteínas de Plantas/química , Plantas/genética , Plantas/metabolismo , Proteínas de Transporte de Membrana/genética , Carbohidratos , Azúcares/metabolismo , Regulación de la Expresión Génica de las Plantas , Filogenia
3.
Plant Physiol Biochem ; 207: 108392, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38301328

RESUMEN

Growth-regulating factors (GRFs) play crucial roles in plant growth, development, hormone signaling, and stress response. Despite their significance, the roles of GRFs in ginger remain largely unknown. Herein, 31 ginger ZoGRFs were identified and designated as ZoGRF1-ZoGRF31 according to their phylogenetic relationships. All ZoGRFs were characterized as unstable, hydrophilic proteins, with 29 predicted to be located in the nucleus. Functional cis-elements related to growth and development were enriched in ZoGRF's promoter regions. RNA-seq and RT-qPCR analysis revealed that ZoGRF12, ZoGRF24, and ZoGRF28 were highly induced in various growth and development stages, displaying differential regulation under waterlogging, chilling, drought, and salt stresses, indicating diverse expression patterns of ZoGRFs. Transient expression analysis in Nicotiana benthamiana indicated that overexpressing ZoGRF28 regulated the transcription levels of salicylic acid, jasmonic acid, and pattern-triggered immunity-related genes, increased chlorophyll content and contributed to reduced disease lesions and an increased net photosynthetic rate. This research lays the foundation for further understanding the biological roles of ZoGRFs.


Asunto(s)
Zingiber officinale , Zingiber officinale/genética , Filogenia , Fotosíntesis , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Comput Med Imaging Graph ; 113: 102347, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38341945

RESUMEN

Characterizing coronary calcified plaque (CCP) provides essential insight into diagnosis and treatment of atherosclerosis. Intravascular optical coherence tomography (OCT) offers significant advantages for detecting CCP and even automated segmentation with recent advances in deep learning techniques. Most of current methods have achieved promising results by adopting existing convolution neural networks (CNNs) in computer vision domain. However, their performance can be detrimentally affected by unseen plaque patterns and artifacts due to inherent limitation of CNNs in contextual reasoning. To overcome this obstacle, we proposed a Transformer-based pyramid network called AFS-TPNet for robust, end-to-end segmentation of CCP from OCT images. Its encoder is built upon CSWin Transformer architecture, allowing for better perceptual understanding of calcified arteries at a higher semantic level. Specifically, an augmented feature split (AFS) module and residual convolutional position encoding (RCPE) mechanism are designed to effectively enhance the capability of Transformer in capturing both fine-grained features and global contexts. Extensive experiments showed that AFS-TPNet trained using Lovasz Loss achieved superior performance in segmentation CCP under various contexts, surpassing prior state-of-the-art CNN and Transformer architectures by more than 6.58% intersection over union (IoU) score. The application of this promising method to extract CCP features is expected to enhance clinical intervention and translational research using OCT.


Asunto(s)
Corazón , Tomografía de Coherencia Óptica , Arterias , Artefactos , Redes Neurales de la Computación
5.
Urolithiasis ; 52(1): 31, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38340165

RESUMEN

To observe the efficacy and safety of retrograde intrarenal surgery (RIRS) combined with flexible vacuum-assisted ureteral access sheath (FV-UAS) and minimally invasive percutaneous nephrolithotomy (MPCNL) in patients with 2-3 cm upper urinary tract stones. A total of 160 patients with 2-3 cm upper urinary tract stones were prospectively randomized into 2 groups-80 in the FV-UAS group and 80 cases as control in the MPCNL group. The stone-free rates (SFRs) at different times (postoperative 1st day and 4th week) were considered as the primary outcome of the study. The secondary end points were operative time, hemoglobin decrease, postoperative hospital stay, and operation-related complications. There was no obvious difference between the two groups in patient's demographics and preoperative clinical characteristics (all P > 0.05). Postoperative data showed that mean decrease in hemoglobin level was less in FV-UAS group than that in MPCNL group (5.3 vs. 10.8 g/L, P < 0.001). Postoperative hospital stay in FV-UAS group was more shorten than that in MPCNL group (2.7 vs. 4.9 days, P < 0.001). There was no statistical significance between the two groups in SFRs during postoperative 1st day and 4th week (both P > 0.05). However, in terms of the rates of bleeding and pain, MPCNL group were both significantly higher than FV-UAS group (6.2 vs. 0.0%, P = 0.023; 16.2 vs. 2.5%, P = 0.003; respectively). Our study showed that RIRS with FV-UAS, a new partnership to treat 2-3 cm upper urinary tract stones, was satisfying as it achieved a high SFR rate and a low rate of complications. This method was safe and reproducible in clinical practice.


Asunto(s)
Cálculos Renales , Cálculos Urinarios , Humanos , Cálculos Renales/cirugía , Estudios Prospectivos , Resultado del Tratamiento , Hemoglobinas
6.
Heliyon ; 10(4): e25253, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38404901

RESUMEN

Vascular aging is an independent risk factor for age-related diseases and a specific type of organic aging. Endothelial progenitor cells (EPCs), a type of bone marrow stem cell, has been linked to vascular aging. The purpose of this study is to investigate if Ginseng-Sanqi-Chuanxiong (GSC) extract, a traditional Chinese medicine, can delay aortic aging in mice by enhancing the performance and aging of EPCs in vivo and to analyze the potential mechanisms through a d-Galactose (D-gal)-induced vascular aging model in mice. Our study revealed that GSC extracts not only enhanced the aortic structure, endothelial function, oxidative stress levels, and aging in mice, but also enhanced the proliferation, migration, adhesion, and secretion of EPCs in vivo, while reducing the expression of p53, p21, and p16. To conclude, GSC can delay vascular senescence by enhancing the function and aging of EPCs, which could be linked to a decrease in p16 and p53/p21 signaling. Consequently, utilizing GSC extracts to enhance the function and senescence of autologous EPCs may present a novel avenue for enhancing autologous stem cells in alleviating senescence.

7.
Adv Sci (Weinh) ; 11(12): e2305682, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38225752

RESUMEN

There are no Food and Drug Administration-approved drugs for treating noise-induced hearing loss (NIHL), reflecting the absence of clear specific therapeutic targets and effective delivery strategies. Noise trauma is demonstrated results in nicotinamide adenine dinucleotide (NAD+) downregulation and mitochondrial dysfunction in cochlear hair cells (HCs) and spiral ganglion neurons (SGNs) in mice, and NAD+ boosted by nicotinamide (NAM) supplementation maintains cochlear mitochondrial homeostasis and prevents neuroexcitatory toxic injury in vitro and ex vivo, also significantly ameliorated NIHL in vivo. To tackle the limited drug delivery efficiency due to sophisticated anatomical barriers and unique clearance pathway in ear, personalized NAM-encapsulated porous gelatin methacryloyl (PGMA@NAM) are developed based on anatomy topography of murine temporal bone by micro-computed tomography and reconstruction of round window (RW) niche, realizing hydrogel in situ implantation completely, NAM sustained-release and long-term auditory preservation in mice. This study strongly supports personalized PGMA@NAM as NIHL protection drug with effective inner ear delivery, providing new inspiration for drug-based treatment of NIHL.


Asunto(s)
Gelatina , Pérdida Auditiva Provocada por Ruido , Metacrilatos , Ratones , Animales , Pérdida Auditiva Provocada por Ruido/tratamiento farmacológico , Pérdida Auditiva Provocada por Ruido/prevención & control , Niacinamida/uso terapéutico , NAD , Preparaciones de Acción Retardada/uso terapéutico , Porosidad , Microtomografía por Rayos X
8.
Sci Rep ; 14(1): 880, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195704

RESUMEN

Genotyping of gDNA rs12041331 (PEAR1), rs6065 (GP1BA), and rs730012 (LTC4S) can provide systematic guidance on the use of aspirin. However, an accurate, reliable and economical approach to simultaneous detection of the above single nucleotide polymorphisms (SNPs) is not reported. Herein, we designed and substantiated an allele-specific (AS) forward primer-superposed amplification analysis for measurement of the SNPs in PEAR1, GP1BA and LTC4S genes, in which the values of ∆Cq (differences in threshold cycles between the wild-type forward primer-based assay and the mutated-type forward primer-based assay) were employed to decide genotype. Mismatch AS forward primers were screened with the singleplex amplification analysis. Moreover, Cq extension optimized by AS forward primer superposition was observed in the selected forward primer-based triplex analysis. Further, robustness assessment of the triplex analysis showed the amplification efficiency ranging from 0.9 to 1.1. Precision test demonstrated the coefficient of variation of less than 2%. And the detective results of 189 DNA samples was completely concordant with that of commercial Sanger sequencing. In summary, we developed a simple, accurate and economical approach to genotyping of rs12041331 (PEAR1), rs6065 (GP1BA) and rs730012 (LTC4S) to provide a valuable pharmacogenomics tool for guidance of aspirin delivery.


Asunto(s)
Aspirina , Farmacogenética , Alelos , Genotipo , Bioensayo
9.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38256002

RESUMEN

The domains of unknown function (DUF) superfamilies contain proteins with conserved amino acid sequences without known functions. Among them, DUF668 was indicated widely involving the stress response of plants. However, understanding ZoDUF668 is still lacking. Here, 12 ZoDUF668 genes were identified in ginger by the bioinformatics method and unevenly distributed on six chromosomes. Conserved domain analysis showed that members of the same subfamily had similar conserved motifs and gene structures. The promoter region of ZoDUF668s contained the light, plant hormone and stress-responsive elements. The prediction of miRNA targeting relationship showed that nine ginger miRNAs targeted four ZoDUF668 genes through cleavage. The expression patterns of 12 ZoDUF668 genes under biotic and abiotic stress were analyzed using RT-qPCR. The results showed that the expression of seven ZoDUF668 genes was significantly downregulated under Fusarium solani infection, six ZoDUF668 genes were upregulated under cold stress, and five ZoDUF668 genes were upregulated under waterlogging stress. These results indicate that the ZoDUF668 gene has different expression patterns under different stress conditions. This study provides excellent candidate genes and provides a reference for stress-resistance research in ginger.


Asunto(s)
Fusariosis , MicroARNs , Zingiber officinale , Zingiber officinale/genética , Secuencia de Aminoácidos , Respuesta al Choque por Frío/genética , Biología Computacional , MicroARNs/genética
10.
BMC Genomics ; 25(1): 83, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245685

RESUMEN

BACKGROUND: Protein phosphatases type 2C (PP2C) are heavily involved in plant growth and development, hormone-related signaling pathways and the response of various biotic and abiotic stresses. However, a comprehensive report identifying the genome-scale of PP2C gene family in ginger is yet to be published. RESULTS: In this study, 97 ZoPP2C genes were identified based on the ginger genome. These genes were classified into 15 branches (A-O) according to the phylogenetic analysis and distributed unevenly on 11 ginger chromosomes. The proteins mainly functioned in the nucleus. Similar motif patterns and exon/intron arrangement structures were identified in the same subfamily of ZoPP2Cs. Collinearity analysis indicated that ZoPP2Cs had 33 pairs of fragment duplicated events uniformly distributed on the corresponding chromosomes. Furthermore, ZoPP2Cs showed greater evolutionary proximity to banana's PP2Cs. The forecast of cis-regulatory elements and transcription factor binding sites demonstrated that ZoPP2Cs participate in ginger growth, development, and responses to hormones and stresses. ZoERFs have plenty of binding sites of ZoPP2Cs, suggesting a potential synergistic contribution between ZoERFs and ZoPP2Cs towards regulating growth/development and adverse conditions. The protein-protein interaction network displayed that five ZoPP2Cs (9/23/26/49/92) proteins have robust interaction relationship and potential function as hub proteins. Furthermore, the RNA-Seq and qRT-PCR analyses have shown that ZoPP2Cs exhibit various expression patterns during ginger maturation and responses to environmental stresses such as chilling, drought, flooding, salt, and Fusarium solani. Notably, exogenous application of melatonin led to notable up-regulation of ZoPP2Cs (17/59/11/72/43) under chilling stress. CONCLUSIONS: Taken together, our investigation provides significant insights of the ginger PP2C gene family and establishes the groundwork for its functional validation and genetic engineering applications.


Asunto(s)
Zingiber officinale , Zingiber officinale/genética , Filogenia , Perfilación de la Expresión Génica , Fosfoproteínas Fosfatasas/genética , Genoma de Planta , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Plant Sci ; 338: 111927, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37984610

RESUMEN

Salt stress is one of the major environmental stressors that remarkably hinders the processes of plant growth and development, thereby limiting crop productivity. An understanding of the molecular mechanisms underlying plant responses against salinity stimulus will help guide the rational design of crop plants to counter these challenges. Nitric oxide (NO) is a redox-related signaling molecule regulating diverse biological processes in plant. Accumulating evidences indicated NO exert its biological functions through posttranslational modification of proteins, notably via S-nitrosylation. During the past decade, the roles of S-nitrosylation as a regulator of plant and S-nitrosylated candidates have also been established and detected. Emerging evidence indicated that protein S-nitrosylation is ubiquitously involved in the regulation of plant response to salt stress. However, little is known about this pivotal molecular amendment in the regulation of salt stress response. Here, we describe current understanding on the regulatory mechanisms of protein S-nitrosylation in response to salt stress in plants and highlight key challenges in this field.


Asunto(s)
Óxido Nítrico , Plantas , Óxido Nítrico/metabolismo , Plantas/metabolismo , Desarrollo de la Planta , Estrés Salino , Transducción de Señal , Procesamiento Proteico-Postraduccional
12.
Chemosphere ; 349: 140958, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38104735

RESUMEN

A novel 3D bimetallic metal-organic framework (MOF(Fe-Co)) was successfully prepared and its performance on sulfamethoxazole (SMX) removal in advanced oxidation process (AOP) based on peracetic acid (PAA) was evaluated. MOF(Fe-Co) exhibited an efficient catalytic performance on PAA activation for SMX degradation under neutral condition. Increasing PAA concentration could enhance SMX removal, while the variation of MOF(Fe-Co) dosage from 0.05 to 0.2 g/L had an inappreciable effect on SMX removal. According to the results of inductively coupled plasma mass spectrometry analyses and X-ray photoelectron spectroscopy, catalytic reactions mainly occurred on the surface of MOF(Fe-Co). Organic radicals (i.e., CH3C(O)OO• and CH3C(O)O•) were demonstrated to be the predominant reactive radicals for SMX degradation by MOF(Fe-Co)/PAA through radical quenching experiments. The presence of Cl- could enhance the degradation of SMX by MOF(Fe-Co)/PAA, while HCO3- and natural organic matter inhibited SMX degradation severely. Five identified degradation products were detected in this system and four possible SMX transformation pathways were proposed, including amino oxidation, S-N bond cleavage, coupling reaction and hydroxylation.


Asunto(s)
Estructuras Metalorgánicas , Contaminantes Químicos del Agua , Ácido Peracético , Sulfametoxazol/química , Contaminantes Químicos del Agua/análisis , Oxidación-Reducción , Peróxido de Hidrógeno/química
13.
Sci Total Environ ; 917: 169306, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38103614

RESUMEN

Microcystins (MCs) are the most common cyanobacterial toxins. Epidemiological investigation showed that exposure to MCs can cause gastro-intestinal symptoms, gastroenteritis and gastric cancer. MCs can also accumulate in and cause histopathological damage to stomach. However, the exact mechanisms by which MCs cause gastric injury were unclear. In this study, Wistar rats were administrated 50, 75 or 100 µg microcystin-LR (MC-LR)/kg, body mass (bm) via tail vein, and histopathology, response of anti-oxidant system and the proteome of gastric tissues at 24 h after exposure were studied. Bleeding of fore-stomach and gastric corpus, inflammation and necrosis in gastric corpus and exfoliation of mucosal epithelial cells in gastric antrum were observed following acute MC-LR exposure. Compared with controls, activities of superoxide dismutase (SOD) were significantly greater in gastric tissues of exposed rats, while activities of catalase (CAT) were less in rats administrated 50 µg MC-LR/kg, bm, and concentrations of glutathione (GSH) and malondialdehyde (MDA) were greater in rats administrated 75 or 100 µg MC-LR/kg, bm. These results indicated that MC-LR could disrupt the anti-oxidant system and cause oxidative stress. The proteomic results revealed that MC-LR could affect expressions of proteins related to cytoskeleton, immune system, gastric functions, and some signaling pathways, including platelet activation, complement and coagulation cascades, and ferroptosis. Quantitative real-time PCR (qRT-PCR) analysis showed that transcriptions of genes for ferroptosis and gastric function were altered, which confirmed results of proteomics. Overall, this study illustrated that MC-LR could induce gastric dysfunction, and ferroptosis might be involved in MC-LR-induced gastric injury. This study provided novel insights into mechanisms of digestive diseases induced by MCs.


Asunto(s)
Antioxidantes , Toxinas Marinas , Microcistinas , Ratas , Animales , Antioxidantes/metabolismo , Microcistinas/toxicidad , Microcistinas/metabolismo , Proteómica , Hígado/metabolismo , Ratas Wistar , Estrés Oxidativo , Glutatión/metabolismo , Estómago
14.
Exp Biol Med (Maywood) ; 248(23): 2393-2407, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38159074

RESUMEN

Palmitoylation, which is mediated by protein acyltransferase (PAT) and performs important biological functions, is the only reversible lipid modification in organism. To study the effect of protein palmitoylation on hypopharyngeal squamous cell carcinoma (HPSCC), the expression levels of 23 PATs in tumor tissues of 8 HPSCC patients were determined, and high mRNA and protein levels of DHHC9 and DHHC15 were found. Subsequently, we investigated the effect of 2-bromopalmitate (2BP), a small-molecular inhibitor of protein palmitoylation, on the behavior of Fadu cells in vitro (50 µM) and in nude mouse xenograft models (50 µmol/kg), and found that 2BP suppressed the proliferation, invasion, and migration of Fadu cells without increasing cell apoptosis. Mechanistically, the effect of 2BP on the transduction of BMP, Wnt, Shh, and FGF signaling pathways was tested with qRT-PCR, and its drug target was explored with western blotting and acyl-biotinyl exchange assay. Our results showed that 2BP inhibited the transduction of the FGF/ERK signaling pathway. The palmitoylation level of Ras protein decreased after 2BP treatment, and its distribution in the cell membrane structure was reduced significantly. The findings of this work reveal that protein palmitoylation mediated by DHHC9 and DHHC15 may play important roles in the occurrence and development of HPSCC. 2BP is able to inhibit the malignant biological behaviors of HPSCC cells, possibly via hindering the palmitoylation and membrane location of Ras protein, which might, in turn, offer a low-toxicity anti-cancer drug for targeting the treatment of HPSCC.


Asunto(s)
Neoplasias de Cabeza y Cuello , Proteínas ras , Ratones , Animales , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello , Palmitatos/farmacología
15.
Genes (Basel) ; 14(12)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38136958

RESUMEN

Actinidia chinensis 'Hongyang', also known as red yangtao (red heart kiwifruit), is a vine fruit tree native to China possessing significant nutritional and economic value. However, information on its genetic diversity and phylogeny is still very limited. The first chloroplast (cp) genome of A. chinensis 'Hongyang' cultivated in China was sequenced using de novo technology in this study. A. chinensis 'Hongyang' possesses a cp genome that spans 156,267 base pairs (bp), exhibiting an overall GC content of 37.20%. There were 132 genes that were annotated, with 85 of them being protein-coding genes, 39 transfer RNA (tRNA) genes, and 8 ribosomal RNA (rRNA) genes. A total of 49 microsatellite sequences (SSRs) were detected, mainly single nucleotide repeats, mostly consisting of A or T base repeats. Compared with 14 other species, the cp genomes of A. chinensis 'Hongyang' were biased towards the use of codons containing A/U, and the non-protein coding regions in the A. chinensis 'Hongyang' cpDNA showed greater variation than the coding regions. The nucleotide polymorphism analysis (Pi) yielded nine highly variable region hotspots, most in the large single copy (LSC) region. The cp genome boundary analysis revealed a conservative order of gene arrangement in the inverted repeats (IRs) region of the cp genomes of 15 Actinidia plants, with small expansions and contractions of the boundaries. Furthermore, phylogenetic tree indicated that A. chinensis 'Hongyang' was the closest relative to A. indochinensis. This research provides a useful basis for future genetic and evolutionary studies of A. chinensis 'Hongyang', and enriches the biological information of Actinidia species.


Asunto(s)
Actinidia , Genoma del Cloroplasto , Filogenia , Actinidia/genética , Evolución Biológica , Nucleótidos
16.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38139237

RESUMEN

Sugars will eventually be exported transporters (SWEETs) are a novel class of sugar transport proteins that play a crucial role in plant growth, development, and response to stress. However, there is a lack of systematic research on SWEETs in Capsicum annuum L. In this study, 33 CaSWEET genes were identified through bioinformatics analysis. The Ka/Ks analysis indicated that SWEET genes are highly conserved not only among peppers but also among Solanaceae species and have experienced strong purifying selection during evolution. The Cis-elements analysis showed that the light-responsive element, abscisic-acid-responsive element, jasmonic-acid-responsive element, and anaerobic-induction-responsive element are widely distributed in the promoter regions of CaSWEETs. The expression pattern analysis revealed that CaSWEETs exhibit tissue specificity and are widely involved in pepper growth, development, and stress responses. The post-transcription regulation analysis revealed that 20 pepper miRNAs target and regulate 16 CaSWEETs through cleavage and translation inhibition mechanisms. The pathogen inoculation assay showed that CaSWEET16 and CaSWEET22 function as susceptibility genes, as the overexpression of these genes promotes the colonization of pathogens, whereas CaSWEET31 functions as a resistance gene. In conclusion, through systematic identification and characteristic analysis, a comprehensive understanding of CaSWEET was obtained, which lays the foundation for further studies on the biological functions of SWEET genes.


Asunto(s)
Capsicum , Capsicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Genes de Plantas , Familia de Multigenes , Regulación de la Expresión Génica de las Plantas , Filogenia
17.
Plants (Basel) ; 12(22)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38005688

RESUMEN

The Jerusalem artichoke (Helianthus tuberosus) is a tuberous plant with considerable nutrient and bioactive compounds. The optimization of the in vitro clonal propagation protocol is critical for large-scale reproduction and biotechnological applications of Jerusalem artichoke production. In this work, in vitro plant regeneration from the stem nodes of the Jerusalem artichoke via direct organogenesis is presented. In the shoot induction stage, the stem segments produced more shoots with vigorous growth on MS medium containing 0.5 mg/L 6-benzylaminopurine (6-BA). The concentrations of 6-BA and gibberellic acid (GA3) were both optimized at 0.5 mg/L for shoot multiplication, and the combination of 0.05 mg/L indole-3-butyric acid (IBA) and 0.05 mg/L 1-naphthylacetic acid (NAA) was the most responsive for root induction, yielding the largest number of roots. The regenerated plantlets were successfully hardened at a 96% survival rate and vigorously grew in the field. The genetic stability of the regenerated plants was confirmed by flow cytometry and simple sequence repeat (SSR) analysis. However, 17.3% of shoots on the optimum shoot induction medium had withered leaves and excessive callus (atypical shoots), which greatly reduced the induction efficiency. Enzyme activity in the typical and atypical shoots was compared. The atypical shoots had significantly higher levels of endogenous indole-3-acetic acid (IAA) and abscisic acid (ABA), as well as increased activity of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD), whereas the content of 6-BA, zeatin (ZT), and GA3 was significantly reduced. The activity of the three enzymes was positively correlated with the content of IAA and ABA, while being negatively correlated with that of 6-BA, ZT, and GA3. The results suggest that the poor growth of the atypical shoots might be closely related to the significant accumulation of endogenous IAA and ABA, thus significantly increasing antioxidant enzyme activity.

18.
Environ Technol ; : 1-10, 2023 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-37953643

RESUMEN

To overcome the shortcomings of Fe(Ⅱ)/peroxydisulfate (PDS) system including the limited working pH range and large iron sludge production, a Fe-doped alginate (Fe-Alg) catalyst was prepared and combined with hydroxylamine (HA) to continuously activate PDS for the removal of organic pollutants in neutral condition. Due to the strong reductive capability of HA, it could significantly enhance the catalytic capability of Fe-Alg for PDS. The results of characterization suggested that Fe(Ⅲ)/Fe(Ⅱ) was evenly distributed in Alg through its complexation with carboxyl groups, and the reduction of Fe(Ⅲ) to Fe(Ⅱ) initiated by HA enabled Orange G (OG) to be continuously degraded in the Fe-Alg/HA/PDS system. The results of quenching experiments suggested that SO4∙- and HO• played a dominant role for OG removal in the Fe-Alg/HA/PDS process. The effect of influence factors (e.g. initial pH, HA concentration, Fe-Alg dose and PDS concentration) and water matrix components (i.e. SO42-, NO3-, Cl-, HCO3- and dissolved organic matters (DOM)) on the performance of Fe-Alg/HA/PDS system was systematically investigated. Other refractory organic contaminants, including diclofenac (DCF), sulfamethoxazole (SMX), oxytetracycline (OTC) and bisphenol AF (BPAF) were also efficiently eliminated in Fe-Alg/HA/PDS system, suggesting the feasibility of this system for the treatment of organic pollutants. This work provides a method to optimize Fe(Ⅱ)/PDS system and a novel process applied to degrade refractory pollutants.

19.
BMC Biol ; 21(1): 203, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37775783

RESUMEN

BACKGROUND: Homology-based recombination (HR) is the cornerstone of genetic mapping. However, a lack of sufficient sequence homology or the presence of a genomic rearrangement prevents HR through crossing, which inhibits genetic mapping in relevant genomic regions. This is particularly true in species hybrids whose genomic sequences are highly divergent along with various genome arrangements, making the mapping of genetic loci, such as hybrid incompatibility (HI) loci, through crossing impractical. We previously mapped tens of HI loci between two nematodes, Caenorhabditis briggsae and C. nigoni, through the repeated backcrossing of GFP-linked C. briggsae fragments into C. nigoni. However, the median introgression size was over 7 Mb, indicating apparent HR suppression and preventing the subsequent cloning of the causative gene underlying a given HI phenotype. Therefore, a robust method that permits recombination independent of sequence homology is desperately desired. RESULTS: Here, we report a method of highly efficient targeted recombination (TR) induced by CRISPR/Cas9 with dual guide RNAs (gRNAs), which circumvents the HR suppression in hybrids between the two species. We demonstrated that a single gRNA was able to induce efficient TR between highly homologous sequences only in the F1 hybrids but not in the hybrids that carry a GFP-linked C. briggsae fragment in an otherwise C. nigoni background. We achieved highly efficient TR, regardless of sequence homology or genetic background, when dual gRNAs were used that each specifically targeted one parental chromosome. We further showed that dual gRNAs were able to induce efficient TR within genomic regions that had undergone inversion, in which HR-based recombination was expected to be suppressed, supporting the idea that dual-gRNA-induced TR can be achieved through nonhomology-based end joining between two parental chromosomes. CONCLUSIONS: Recombination suppression can be circumvented through CRISPR/Cas9 with dual gRNAs, regardless of sequence homology or the genetic background of the species hybrid. This method is expected to be applicable to other situations in which recombination is suppressed in interspecies or intrapopulation hybrids.


Asunto(s)
Caenorhabditis , Animales , Caenorhabditis/genética , Sistemas CRISPR-Cas , Mapeo Cromosómico , Genoma , Recombinación Genética
20.
J Colloid Interface Sci ; 652(Pt B): 1394-1404, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37659308

RESUMEN

Transition metal oxides have been extensively studied due to their large theoretical capacities, but their practical application has been hampered by low electrical conductivity and dramatic volume fluctuation during cycling. In this work, we synthesized Zn3V2O8 material using Zn-V-MOF (metal-organic framework) as a sacrificial template to improve the electrochemical characteristics of lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). Unique dodecahedral structure, larger specific surface area and higher ability to mitigate volume changes, improve the electrochemical reaction active site while accelerating ion transport. Zn3V2O8 with 2-methylimidazole as a ligand demonstrated a discharge capacity of 1225.9 mAh/g in LIBs and 761.6 mAh/g in SIBs after 300 cycles at 0.2 C. Density functional theory (DFT) calculation illustrates the smaller diffusion barrier energy and higher specific capacity in LIBs that is ascribed to the fact that Li has a smaller size and hence its diffusion is easier. This study may lead to a path for the manufacturing of high-performance LIBs and SIBs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...